Multi-Scale Spatial Concatenations of Local Features in Natural Scenes and Scene Classification

نویسندگان

  • Xiaoyuan Zhu
  • Zhiyong Yang
چکیده

How does the visual system encode natural scenes? What are the basic structures of natural scenes? In current models of scene perception, there are two broad feature representations, global and local representations. Both representations are useful and have some successes; however, many observations on human scene perception seem to point to an intermediate-level representation. In this paper, we proposed natural scene structures, i.e., multi-scale spatial concatenations of local features, as an intermediate-level representation of natural scenes. To compile the natural scene structures, we first sampled a large number of multi-scale circular scene patches in a hexagonal configuration. We then performed independent component analysis on the patches and classified the independent components into a set of clusters using the K-means method. Finally, we obtained a set of natural scene structures, each of which is characterized by a set of dominant clusters of independent components. We examined a range of statistics of the natural scene structures, compiled from two widely used datasets of natural scenes, and modeled their spatial arrangements at larger spatial scales using adjacency matrices. We found that the natural scene structures include a full range of concatenations of visual features in natural scenes, and can be used to encode spatial information at various scales. We then selected a set of natural scene structures with high information, and used the occurring frequencies and the eigenvalues of the adjacency matrices to classify scenes in the datasets. We found that the performance of this model is comparable to or better than the state-of-the-art models on the two datasets. These results suggest that the natural scene structures are a useful intermediate-level representation of visual scenes for our understanding of natural scene perception.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Action Recognition Using Multi-Scale Spatial-Temporal Concatenations of Local Features as Natural Action Structures

Human and many other animals can detect, recognize, and classify natural actions in a very short time. How this is achieved by the visual system and how to make machines understand natural actions have been the focus of neurobiological studies and computational modeling in the last several decades. A key issue is what spatial-temporal features should be encoded and what the characteristics of t...

متن کامل

Adaptive Deep Pyramid Matching for Remote Sensing Scene Classification

Convolutional neural networks (CNNs) have attracted increasing attention in the remote sensing community. Most CNNs only take the last fully-connected layers as features for the classification of remotely sensed images, discarding the other convolutional layer features which may also be helpful for classification purposes. In this paper, we propose a new adaptive deep pyramid matching (ADPM) mo...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Classification of scene photographs from local orientations features

Natural image understanding is a very active and promising research domain both in psychology for visual perception modelling and in computer science for image retrieval. In this study, we investigate the eciency of orientation distributions over the whole image in the scale space. The global distribution of the local dominant orientations (LDO) appears to be a powerful feature for discriminat...

متن کامل

3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology

3D point clouds of natural environments relevant to problems in geomorphology (rivers, coastal environments, cliffs,...) often require classification of the data into elementary relevant classes. A typical example is the separation of riparian vegetation from ground in fluvial environments, the distinction between fresh surfaces and rockfall in cliff environments, or more generally the classifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013